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13115 Saint Paul Lez Durance, France
b Institut de M�eecanique des Fluides de Toulouse (IMFT), Avenue du Professeur Camille Soula, 31400 Toulouse, France

Received 10 October 2002
Abstract

The assumption of local thermal equilibrium for describing macroscopic heat transfer in a porous medium subjected

to a liquid–vapor flow with phase change has been often investigated. Under certain circumstances, this assumption

appears to be too restrictive and fails to be valid. In this paper, the method of volume averaging is used to derive a

three-temperature macroscopic model considering local thermal non-equilibrium between the three phases. A closed

form of the evaporation rate at the macroscopic level is obtained depending on the macroscopic temperatures and the

effective properties. Six pore-scale closure problems are proposed, which allow to determine all the effective transport

coefficients for representative unit cells. These closure problems are solved for simple unit cells and analytical results are

presented in these cases. For these simplified unit cells, a comparison between averaged temperatures obtained from

direct pore-scale simulations and averaged temperatures obtained from the three-equation model has been carried out

for purely diffusive phase-change processes. A good agreement is obtained between the theory and the pore-scale

calculations. This confirms the validity and the practical interest of the proposed approach.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer and fluid flow with liquid–vapor phase

change in porous media appears in a large number of

situations of practical interest including drying processes

[24], geothermal systems [71], heat-exchangers design

[46], and nuclear safety analysis [45]. For the last ap-

plication, there is a strong interest to understand and

predict the conditions for which it is possible to cool a

severely damaged reactor core.

The macroscopic description of heat transfer in a

porous medium subjected to a two-phase flow with

phase change is often investigated by the use of a single

temperature equation. While one-equation models have

been proposed recently that do not make the assumption

of local equilibrium ([48], in the case of no phase

change), the one-equation models are generally based on
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this assumption. Here, local thermal equilibrium means

that the macroscopic temperatures of the three phases

are close enough so that a single temperature suffices to

describe the heat transport process. Although the as-

sumption of local thermal equilibrium is acceptable in

many cases of unsaturated porous media with liquid–

vapor phase change, particularly for most drying pro-

cesses [69], the great simplicity of the one-equation

model regarding the effective transport coefficients cer-

tainly motivates its use. Nevertheless, the condition of

local thermal equilibrium requires numerous constraints

which have been investigated by several authors

[55,58,64,68]. For instance, this condition of local equi-

librium is no longer valid when the particles or pores

are not small enough, when the thermal properties

differ widely, or when convective transport is impor-

tant. Moreover, when there is a significant heat gener-

ation in any of the phases, the system will become

rapidly far from local thermal equilibrium [38]. Finally,

it must be noticed too that local thermal equilib-

rium becomes uncertain for situations involving rapid
ed.
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Nomenclature

Abc b; c ¼ g; ‘; s, b–c interface contained within

the averaging volume, m2

bbc b; c ¼ g; ‘; s, vector that maps hTbib onto eTTc,

m

Cp heat capacity, J kg�1 K�1

qCp volumetric heat capacity, Jm�3 K�1

dbci b; c ¼ g; ‘; s, non-traditional convective

transport coefficient, Wm�2 K�1

h enthalpy per unit mass, J kg�1

hsatb b ¼ g; ‘, enthalpy per unit mass for the b-
phase at the saturation temperature, J kg�1

hhbib b ¼ g; ‘; s, intrinsic average enthalpy for the

b-phase, J kg�1

~hhb b ¼ g; ‘; s, deviation enthalpy for the b-
phase, J kg�1

hbrci b; c;r ¼ g; ‘; s effective heat transfer coeffi-

cient, Wm�3 K�1

k thermal conductivity, Wm�1 K�1

Kbc b; c ¼ g; ‘; s, effective thermal dispersion

tensor, Wm�1 K�1

li i ¼ 1; 2; 3, lattice vectors used to describe a

unit cell, m

‘b b ¼ g; ‘; s, pore-scale characteristic length

for the b-phase, m
L macroscopic characteristic length, m

_mm mass rate of evaporation, kgm�3 s�1

nbc b; c ¼ g; ‘; s, unit normal vector directed

from the b-phase towards the c-phase,
nbc ¼ �ncb

r0 radius of the averaging volume, m

r position vector, m

scbi scalar that maps hTbib � T sat onto eTTc

S saturation, S ¼ e‘=e
t time, s

Tb b ¼ g; ‘; s, temperature in the b-phase, K

hTbib b ¼ g; ‘; s, intrinsic average temperature for

the b-phase, KeTTb b ¼ g; ‘; s, deviation temperature for the b-
phase, K

T sat saturation temperature, K

ubc b; c ¼ g; ‘; s, non-traditional convective

transport coefficient, Wm�2 K�1

vb b ¼ g; ‘, velocity in the b-phase, m s�1

hvbib b ¼ g; ‘, intrinsic average velocity for the b-
phase, m s�1

hvbi b ¼ g; ‘, superficial velocity for the b-phase
hvbi ¼ ebhvbib, m s�1evvb b ¼ g; ‘, deviation velocity for the b-phase,
m s�1

V averaging volume, m3

Vb volume of the b-phase contained within the

averaging volume, m3

w speed of displacement of the liquid–vapor

interface, m s�1

Greek symbols

Dh heat of vaporization, J kg�1

q density, kgm�3

g viscosity, N sm�2

eb b ¼ g; ‘; s, volume fraction of the b-phase
e porosity, e ¼ 1� es
-s volumetric heat source, Wm�3

Subscripts

g gas, vapor

‘ liquid

s solid

Superscript

sat saturation
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evaporation–condensation processes. A typical example

of this situation is the water flooding of an overheated

porous bed in the framework of severe nuclear reactor

accidents analysis. For such extreme conditions, a one-

temperature description is inadequate to describe cor-

rectly both the transients associated with the quench

front penetrating the hot dry porous layer and regions

where dryout occurs. The first situation is analogous to

the melt jets fragmentation problem where large tem-

perature differences between phases exist and can only be

dealt with by using a non-equilibrium approach [3,13].

The second situation corresponds to the prediction of

critical dryout heat flux. For one-dimensional flows, the

one-equation description of this problem has received

considerable attention, see for instance [45,62]. For two

and three-dimensional flows, the situation is quite dif-
ferent because hydrodynamic effects seem to play a more

important role and lead to large thermal non-equilibrium

which have been observed experimentally [6]. A com-

prehensive analysis of these non-equilibrium effects has

not yet been achieved. This emphasizes the need for the

development of non-equilibrium theories to describe

complex two-phase flows in porous media.

When the assumption of local thermal equilibrium

fails to be valid, one possible solution to model such

cases is to develop separate transport equations for each

phase. This leads to macroscopic models which are re-

ferred to as non-equilibrium models. Such models tend to

become more and more popular in heat and mass

transfer problems [31,50] involving large thermal or

chemical constraints. For transport through a two-phase

material, non-equilibrium models have been proposed
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under the form of two-equation models. Such models

have been studied extensively and the effective transport

coefficients which appear in the macroscopic equations

have been calculated for many pore-scale configurations,

see for instance [53]. The validity of a two-equation

description has been examined in details for the transient

behavior of purely diffusive problems using a quasi-

steady [58] and an unsteady two-equation model [8,47].

The first corresponds to a macroscopic model for which

effective coefficients are constants while the latter cor-

responds to time-dependent effective coefficients which

may be necessary if memory effects are important. This

problem has also been addressed by comparing the

quasi-steady two-equation model with a mixed formu-

lation [32] which consists of an averaged equation for

the phase with the highest conductivity coupled with a

pore-scale equation for the other phase. Results of these

studies indicate that the quasi-steady two-equation de-

scription is sufficient to obtain a good approximation of

the problem provided thermal diffusivity ratios and

temperature variation frequencies are moderate.

The problem of a two-phase flow in a porous medium

with local thermal non-equilibrium has received less

attention from a theoretical point of a view. A three-

equation model has been developed by Petit et al. [52]

using the method of volume averaging. However this

model does not take into account the phase change

process. On the other hand, three-equation models have

been proposed heuristically such as [2,13,44,51]. As was

emphasized by Quintard et al. [53], heuristic approaches

lead to intuitive macroscopic models and this may lead

to erroneous interpretations since these models are not

derived from pore-scale transport equations through

some scaling-up theory. In particular, no comprehensive

approach regarding the pore-scale physics is available

for the determination of the effective transport coeffi-

cients, such as the heat exchange coefficients that appear

in those three-equation models. These transport co-

efficients could be determined experimentally but this

represents a very challenging problem, especially for

non-trivial situations such as those encountered in nu-

clear safety problems. We refer the reader to [32,34,43]

for an illustration of the experimental difficulties asso-

ciated with the estimate of the effective transport coef-

ficients. Darcy’s scale velocities and liquid volume

fraction measurements in two-phase flows are made es-

pecially difficult and sometimes impossible in a porous

medium because standard optical techniques or devices

(optic fiber) cannot be used in most cases of interest

(small pores, opaque particles). As a consequence, data

to obtain effective properties correlations are very diffi-

cult to obtain. Owing to these experimental difficulties,

effective properties of heuristic models are often

extrapoled from existing correlations established in the

case of single phase flow through porous media and two-

phase flow in pipes. Heat exchange coefficients are also
determined by using correlations based on boundary

layer theory such as [9] but it has been shown [53] that

such correlations do not necessarily provide good ap-

proximations. For instance, they often do not take into

account the diffusive regime that occurs at low P�eeclet
number, or they do not take into account the impor-

tance of the thermal conductivity ratio. Therefore, it

appears to be important to determine the effective

transport coefficients on the basis of a comprehensive

analysis of the relationship between the pore-scale

physics and the macroscopic description.

The purpose of this paper is to deal with the deri-

vation of the macroscopic thermal energy transport

equations in a porous medium subjected to a liquid–

vapor flow with phase change using the method of

volume averaging and considering local thermal non-

equilibrium between the three-phases. On the basis of a

steady-state closure of the problem at the microscopic

scale, the method of volume averaging leads to a com-

prehensive generalized macroscopic three-equation

model. One of the originalities of this study lies in the

derivation of a closed form of the mass rate of evapora-

tion at the macroscopic level depending on the three

average temperatures and on the effective properties. Six

pore-scale closure problems are provided that allow to

determine all the effective transport coefficients for unit

cells representative of the porous medium under con-

sideration. In this paper, we focus our attention on

simple one-dimensional unit cells for which analytical

solutions can be obtained. For these simplified unit cells

and for purely diffusive processes with phase change, we

performed comparisons between the macro-scale model

and numerical simulations at the pore-scale. For a

heating problem and a temperature relaxation problem,

we present comparisons between the theoretical and the

numerical solutions for both the macroscopic temper-

atures and the liquid volume fraction evolutions.
2. Pore-scale problem

The problem under consideration corresponds to

heat transfer in a three-phase system as represented in

Fig. 1. We consider the flow of a liquid and its vapor in a

rigid porous structure. The solid is identified as the s-

phase, the liquid as the ‘-phase, and the vapor as the g-

phase. It is assumed that the physical properties of the

fluids do not change strongly with temperature.

In this paper, we will adopt the drastic assumption

that the two-phase flow problem can be decoupled from

the heat transfer problem and can be solved indepen-

dently. As a consequence, the velocity of the two phases

will be assumed to be a known field. The two-phase flow

macroscopic description has been extensively studied

from up-scaling theories and the reader can refer to

[7,41,67] for a detailed analysis of the problem. In those
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papers, a quasi-static theory has been proposed which

neglects the effects associated with the possible rapid

changes of the two-phase interface. In other words, if we

assume that we know the position of the interface, the

theory says that the form of the macro-scale equations is

equivalent to extended generalized Darcy’s laws. In this

case, multiphase permeabilities and capillary pressure

relationships can be determined from the pore-scale

description. In practice, however, this is only useful if

the assumptions made concerning the interface geometry

are physically acceptable. Otherwise, the position of the

interface must be determined by solving problems that

are similar to the original two-phase flow problem, which

is an extremely difficult task even in the case of moder-

ately complex porous structures. We acknowledge that

the above decoupling assumption may be too drastic in

many situations, especially in the case of intense boiling,

and this will require further analyses involving direct

simulation over a significant number of pores. We be-

lieve, however, that even with this assumption, the dis-

cussion below opens interesting perspectives as far as

non-equilibrium models are concerned.

We begin by the pore-scale boundary value problem

that describes the mass transfer process

oqg

ot
þr � ðqgvgÞ ¼ 0; in the g-phase ð1Þ

vg ¼ 0; at Ags ð2Þ

n‘g � qgðvg � wÞ ¼ n‘g � q‘ðv‘ � wÞ; at A‘g ð3Þ
v‘ ¼ 0; at A‘s ð4Þ

oq‘

ot
þr � ðq‘v‘Þ ¼ 0; in the ‘-phase ð5Þ

Here w is the liquid–vapor interface velocity, n‘g repre-

sents the unit normal directed from the ‘-phase towards
the g-phase and A‘g is the ‘–g interface. On the other

hand, the pore-scale heat transfer problem in the three-

phase system is described in terms of the following

governing differential equations

oqghg
ot

þr � ðqghgvgÞ ¼ r � ðkgrTgÞ; in the g-phase

ð6Þ

oq‘h‘
ot

þr � ðq‘h‘v‘Þ ¼ r � ðk‘rT‘Þ; in the ‘-phase ð7Þ

oqshs
ot

¼ r � ðksrTsÞ þ -s; in the s-phase ð8Þ

where -s represents a constant homogeneous volumetric

thermal source in the solid phase. Here we have

neglected compression work, viscous dissipation and

radiation exchange. The boundary conditions at the

liquid–solid and vapor–solid interfaces express conti-

nuity of both temperatures and heat fluxes

Tg ¼ Ts; ngs � kgrTg ¼ ngs � ksrTs at Ags ð9Þ

T‘ ¼ Ts; n‘s � k‘rT‘ ¼ n‘s � ksrTs at A‘s ð10Þ

The boundary conditions at the liquid–vapor interface

are more complex because phase change takes place at
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this interface. It is quite reasonable to assume that the

vapor phase is in thermodynamical equilibrium with the

liquid phase at the ‘–g interface. This basically means

that the interface temperature is fixed at the equilibrium

saturation temperature T sat. Under these circumstances,

the boundary conditions at the liquid–vapor interface

are written as

T‘ ¼ Tg ¼ T sat at A‘g ð11Þ

n‘g � ð�kgrTg þ qghgðvg � wÞÞ
¼ n‘g � ð�k‘rT‘ þ q‘h‘ðv‘ � wÞÞ at A‘g ð12Þ

As pointed out by Quintard and Whitaker [57] in an

analog case for mass transfer processes, the condition

(11) is referred to as local thermodynamic equilibrium and

does not have to be confused with the assumption of local

thermal equilibrium. In addition to Eqs. (10)–(12),

boundary conditions at the entrances and the exits of the

medium and initial conditions must be prescribed in or-

der to solve the problem and we refer to [70] for their

treatment.
3. Volume averaging

In this paper, our objective is to develop a three-

temperature macroscopic model using the method of

volume averaging. In this method, an averaging volume

V is associated with every point in space as illustrated in

Fig. 1. Then, the macroscopic transport equations can

be obtained by averaging the pore-scale transport

equations over this volume. The length scale constraints

required in the method of volume averaging are dis-

cussed in details elsewhere [18,55] and here we note only

that the averaging volume must be large compared with

the pore-scale characteristic lengths ‘g, ‘‘ and ‘s but

small compared to the macroscopic characteristic length

L. For some function wb associated with the b-phase, we
define two different averages, the phase average hwbi and
the intrinsic phase average hwbi

b
. These two averages are

defined according to

hwbi ¼
1

V

Z
Vb

wb dV ; hwbi
b ¼ 1

Vb

Z
Vb

wb dV ;

hwbi ¼ ebhwbi
b ð13Þ

in which Vb represents the volume of the b-phase con-

tained within the averaging volume and eb is the volume

fraction of the b-phase (eg þ e‘ þ es ¼ 1). The point

values wb in the b-phase are related to the intrinsic phase

average hwbi
b
and the pore-scale deviation ~wwb according

to Gray’s [33] spatial decomposition

wb ¼ hwbi
b þ ~wwb ð14Þ
3.1. Mass transport

Before dealing with the averaging process associated

with the heat transport problem, we first recall the vol-

ume averaged forms of the continuity equations. We

simply list below the major steps leading to the macro-

scopic forms, more details can be found in [69]. The

volume averaging of the pore-scale mass transport

equations (1) and (5) leads to

oeghqgi
g

ot
þr � hqgvgi ¼ � 1

V

Z
Ag‘

ng‘ � qgðvg � wÞdA ð15Þ

oe‘q‘

ot
þr � ðq‘hv‘iÞ ¼ � 1

V

Z
A‘g

n‘g � q‘ðv‘ � wÞdA ð16Þ

where we have made use of the general transport theo-

rem and the spatial averaging theorem [66]. We define

the mass rate of evaporation _mm according to

_mm ¼ � 1

V

Z
Ag‘

ng‘ � qgðvg � wÞdA ð17Þ

Because of the boundary condition Eq. (3), this defini-

tion leads to the following continuity macroscopic

equations

oegqg

ot
þr � ðqghvgiÞ ¼ _mm ð18Þ

oe‘q‘

ot
þr � ðq‘hv‘iÞ ¼ � _mm ð19Þ

where hvgi and hv‘i are the superficial or Darcy’s velo-

cities. In these equations, it has been assumed that both

the liquid and vapor phase densities do not vary sig-

nificantly within the averaging volume. As a consequence,

the point densities qg and q‘ can be identified with the

intrinsic phase average densities hqgi
g
and hq‘i

‘
. How-

ever, it must be noted that neglecting variations within

the averaging volume does not mean that the densities

will be constants at the macroscopic scale [69]. To be

explicit about this point, hqgi
g
is replaced in the macro-

scale equations by

hqgi
g ¼ qgðhpgi

g
; hTgigÞ ð20Þ
3.2. Energy transport

We are now ready to form the phase average of

Eqs. (6)–(8). Starting with the pore-scale thermal energy

equation for the g-phase, we form the phase average to

obtain

oqghg
ot

� �
þ hr � ðqghgvgÞi ¼ hr � ðkgrTgÞi ð21Þ

Once again we ignore variations of the physical prop-

erties within the averaging volume. The application of
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the general transport theorem and the spatial averaging

theorem leads to

oqghhgi
ot

þr � hqghgvgi þ
1

V

Z
Ag‘

ng‘ � qghgðvg � wÞdA

¼ r � hkgrTgi þ
1

V

Z
Ag‘

ng‘ � kgrTg dA

þ 1

V

Z
Ags

ngs � kgrTg dA ð22Þ

One can follow previous studies [18,33,61,73] in order to

express Eq. (22) as

oegqghhgi
g

ot
þr � ðegqghhgi

ghvgigÞ þ r � hqg
~hhg~vvgi

þ 1

V

Z
Ag‘

ng‘ � qghgðvg � wÞdA

¼ r � egkgrhTgig
 

þ 1

V

Z
Ag‘

ng‘kgeTTg dA

þ 1

V

Z
Ags

ngskgeTTg dA

!
�reg � kgrhTgig

þ 1

V

Z
Ag‘

ng‘ � kgreTTg dAþ 1

V

Z
Ags

ngs � kgreTTg dA

ð23Þ

Here we have used the following spatial decompositions

hg ¼ hhgig þ ~hhg; Tg ¼ hTgig þ eTTg; vg ¼ hvgig þ ~vvg

ð24Þ

It is beyond the scope of this paper to recall the devel-

opments leading to Eq. (23) and we refer the reader to

the literature cited above for a complete analysis. Using

the macroscopic mass transport equation for the g-phase

equation (18), one can obtain a more convenient form of

the left hand side of Eq. (23) given by

egqg

ohhgig

ot
þ qghvgi � rhhgig þr � hqg

~hhg~vvgi

þ 1

V

Z
Ag‘

ng‘ � qgðhg � hhgigÞðvg � wÞdA ð25Þ

At this point, we express the point enthalpy–temper-

ature relationship as

hg ¼ hsatg þ CpgðTg � T satÞ ð26Þ

h‘ ¼ hsat‘ þ Cp‘ðT‘ � T satÞ ð27Þ

hs ¼ CpsTs þ h0s ð28Þ

Ignoring variations of the physical properties within the

averaging volume, these relations lead to the following

relations for the g-phase intrinsic average and the g-

phase spatial deviation

hhgig ¼ hsatg þ CpgðhTgig � T satÞ ð29Þ
~hhg ¼ Cpg
eTTg ð30Þ

We refer here to [36] for a more detailed treatment of the

constraints leading to such an average enthalpy–tem-

perature relationship. From Eqs. (29) and (30), expres-

sion (25) takes the form

egðqCpÞg
ohTgig

ot

�
þ hvgig � rhTgig

�
þr � ððqCpÞgheTTg~vvgiÞ

þ 1

V

Z
Ag‘

ng‘ � ðqCpÞgeTTgðvg � wÞdA ð31Þ
The last term of Eq. (31) represents a phase change term

and it can be written explicitly in term of the mass rate

of evaporation _mm. To do so, we first remark that the g-

phase temperature can be decomposed according to Eq.

(24) and one can use this decomposition in order to

express the thermodynamic equilibrium boundary con-

dition (11) as

eTTg ¼ T sat � hTgig; on A‘g ð32Þ

When both hTgig and the saturation temperature are

removed from the integral of expression (31), we can use

the mass rate of evaporation definition Eq. (17) to ex-

press the phase change term as

1

V

Z
Ag‘

ng‘ � ðqCpÞgeTT‘ðvg � wÞdA

¼ � _mmCpgðT sat � hTgigÞ ð33Þ

where we have again ignored variations of the physical

properties within the averaging volume. We can now use

Eq. (33) with expression (31) in the left hand side of Eq.

(23) to obtain the following form of the volume aver-

aged energy transport equation for the g-phase

egðqCpÞg
ohTgig

ot

�
þ hvgig � rhTgig

�
þr � ððqCpÞgheTTg~vvgiÞ

� _mmCpgðT sat � hTgigÞ

¼ r � egkgrhTgig
 

þ 1

V

Z
Ag‘

ng‘kgeTTg dA

þ 1

V

Z
Ags

ngskgeTTg dA

!
�reg � kgrhTgig

þ 1

V

Z
Ag‘

ng‘ � kgreTTg dAþ 1

V

Z
Ags

ngs � kgreTTg dA

ð34Þ

Equations similar to Eq. (34) are available for the ‘-
phase and the s-phase, and they are written below

without further development
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e‘ðqCpÞ‘
ohT‘i‘

ot

 
þ hv‘i‘ � rhT‘i‘

!
þr � ððqCpÞ‘heTT‘~vv‘iÞ

þ _mmCp‘ðT sat � hT‘i‘Þ

¼ r � e‘k‘rhT‘i‘
 

þ 1

V

Z
A‘g

n‘gk‘eTT‘ dA

þ 1

V

Z
A‘s

n‘sk‘eTT‘ dA

!
�re‘ � k‘rhT‘i‘

þ 1

V

Z
A‘g

n‘g � k‘reTT‘ dAþ 1

V

Z
A‘s

n‘s � k‘reTT‘ dA ð35Þ

esðqCpÞs
ohTsis

ot

¼ r � esksrhTsis
 

þ 1

V

Z
As‘

ns‘kseTTs dA

þ 1

V

Z
Asg

nsgkseTTs dA

!
�res � ksrhTsis

þ 1

V

Z
As‘

ns‘ � ksreTTs dAþ 1

V

Z
Asg

nsg � ksreTTs dAþ esh-sis

ð36Þ
4. Closure

Since the temperature deviations appear in the aver-

aged transport equations (34)–(36), one needs to develop

boundary value problems for these deviations. To ob-

tain a governing equation for the deviation eTTg, we return

to the pore-scale transport equation (6), introduce

Gray’s decomposition equation (14), and subtract the

result from Eq. (34) divided by eg. The resulting pore-

scale equation for eTTg is written as

ðqCpÞg
oeTTg

ot
þ ðqCpÞgvg � reTTg þ ðqCpÞg~vvg � rhTgig

� e�1
g r � ððqCpÞgheTTg~vvgiÞ þ e�1

g _mmCpgðT sat � hTgigÞ

¼ r � ðkgreTTgÞ � e�1
g r � 1

V

Z
Ag‘

ng‘kgeTTg dA

 

þ 1

V

Z
Ags

ngskgeTTg dA

!

� e�1
g

1

V

Z
Ag‘

ng‘ � kgreTTg dA

 
þ 1

V

Z
Ags

ngs � kgreTTg dA

!
ð37Þ

This result can be simplified by estimating the order of

magnitude of its different terms. This has been done for

instance by Carbonell and Whitaker [18] and Quintard

and Whitaker [55,61]. According to these previous de-

velopments, on the basis of the length-scale constraint

‘g � L, we can simplify Eq. (37) to obtain
ðqCpÞg
oeTTg

ot
þ ðqCpÞgvg � reTTg þ ðqCpÞg~vvg � rhTgig

þ e�1
g _mmCpgðT sat � hTgigÞ

¼ r � ðkgreTTgÞ � e�1
g

1

V

Z
Ag‘

ng‘ � kgreTTg dA

 

þ 1

V

Z
Ags

ngs � kgreTTg dA

!
ð38Þ

Similar governing equations can be obtained for eTT‘

and eTTs following the same procedure. Boundary condi-

tions for the spatial deviations can be derived from

boundary conditions (9)–(11) using spatial decomposi-

tions such as the one given by Eq. (14).

At this point, to obtain a macroscopic description of

the three-phase system, we need to solve simultaneously

the macroscopic transport equations (34)–(36), together

with the pore-scale boundary value problem for the

deviations eTTg, eTT‘ and eTTs. This leads to a more complex

problem and thus motivates us to make some simplifi-

cations and to construct an approximate solution.

All these simplifications will be discussed on the basis

of the more exhaustively studied two-phase system case.

First we will dismiss the case of local thermal equilib-

rium for which a single temperature treatment can be

used, and we refer the reader to the literature on the

subject for an approximate solution of the coupled

micro-scale and averaged equations (see for instance

[37,56,70] for an approach using the theory of volume

averaging or [15,16,29] for a treatment using the homo-

genization theory). Non-equilibrium situations in the

case of purely diffusive systems has received a lot of

attention. In this discussion, we will make use of the

literature about thermal diffusion, but also on works

based on the equations describing the flow of a slightly

compressible fluid [21], which have the same mathe-

matical structure. The elements of the discussion are

summarized below.

Given the nature of the coupled equations, there is a

strong potential for the solution showing non-local be-

havior in space and time [12,23,39], i.e., the solution of

the coupled equations features historical behavior in-

volving the history at all points within the domain. All

the literature is about approximate solutions to avoid

such a complicated treatment. The first approximation

historically used led to a fully macro-scale model in-

volving two macro-scale equations [10,18,55,58,73]. This

development implies a quasi-steady treatment of the

deviation equations, i.e., the time derivative is formally

suppressed in these equations. The temperature devia-

tions are expressed by linear combinations of the aver-

aged source terms, i.e., temperature gradients and

temperature differences involving mapping scalar and

vectors that are given by a series of quasi-steady closure

problems. As a consequence, the resulting effective
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coefficients are not time dependent, and some historical

effects are lost in this analysis. The implications of these

assumptions have been studied on the basis of a com-

parison with numerical experiments [40,47,55,58], and

these have shown that such two-equation models are

satisfactory under a wide range of practical situations.

If one needs to incorporate in the analysis more

transient phenomena, several possibilities are offered.

Within the framework of two-equation models, transient

effective properties may be used. Different ideas have

been put forward, and they are discussed in some detail

in [40,47]. The proposal by [47] involves transient clo-

sure problems. An alternate route has been proposed by

[14], the resulting representation of the deviations is

similar to the quasi-steady representation with addi-

tional terms involving time derivatives of the source

terms. More advanced modelling of the transient be-

havior would require mixed models featuring one aver-

aged equation for the high conductivity phase, coupled

with a micro-scale equation for the low conductivity

phase with a mixed boundary condition involving the

averaged temperature on one side and the micro-scale

temperature on the other side [4,5,8,26]. This approach

would be extremely complex in practice since it would

require fine gridding of one of the phase.

As a conclusion of this literature review, and given

the complexity of the three-phase problem under con-

sideration in this paper, we believe that the first attempt

should follow the lines of the quasi-steady analysis. This

theory has already been extended to the two-phase flow

problem with convection [18,42,43,53,73] and with homo-

geneous and heterogeneous heat sources [61]. It has been

also applied to the three-phase flow problem without

phase change [52].

First, we simplify the transport equations for eTTg andeTT‘ by making the assumption that the interface evolution

at the pore level is quasi-static. Such an assumption is

classically made for pore-scale moving boundary prob-

lems [20,57,60] and it basically means that velocities and

interfaces are stationary at the pore-scale compared to

other relaxation times. In addition, we make the as-

sumption that the mass rate of evaporation has a negli-

gible impact on the temperature deviations and as a

result it is discarded in the governing equation for botheTTg, Eq. (38), and eTT‘. This assumption as well as the quasi-

static description will be partially discussed in Section 7.

Finally, we simplify the governing equations for the de-

viations by imposing the following constraints so that theeTTg, eTT‘ and eTTs-fields can be treated as quasi-steady

kgt�

ðqCpÞg‘2g
� 1;

k‘t�

ðqCpÞ‘‘2‘
� 1;

kst�

ðqCpÞs‘2s
� 1 ð39Þ

in which t� is the characteristic process time. Under these

circumstances, one can discard the temporal derivatives

at the closure level. These constraints as well as their
impact are discussed in detail in [53,55] for two-phase

systems and here it will be assumed that they are satis-

fied for the three-phase system under consideration.

Under these circumstances, the pore-scale boundary

value problem for the deviations simplifies to

ðqCpÞgvg � reTTg þ ðqCpÞgevvg � rhTgig|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
source

¼ r � ðkgreTTgÞ

� e�1
g

1

V

Z
Agl

ng‘ � kgreTTg dA

 
þ 1

V

Z
Ags

ngs � kgreTTg dA

!
;

in the g-phase ð40Þ

eTTg ¼ T sat � hTgig|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
source

; at A‘g ð41Þ

eTTg ¼ eTTs � ðhTgig � T satÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

þðhTsis � T satÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

; at Ags ð42Þ

ngs � kgreTTg ¼ ngs � ksreTTs

� ngs � kgrhTgig|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

þ ngs � ksrhTsis|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

; at Ags

ð43Þ

ðqCpÞ‘v‘ � reTT‘ þ ðqCpÞ‘evv‘ � rhT‘i‘|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
source

¼ r � ðk‘reTT‘Þ

� e�1
‘

1

V

Z
A‘g

n‘g � k‘reTT‘ dA

 
þ 1

V

Z
A‘s

n‘s � k‘reTT‘ dA

!
;

in the ‘-phase ð44Þ

eTT‘ ¼ T sat � hT‘i‘|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
source

; at A‘g ð45Þ

eTT‘ ¼ eTTs þ ðhTsis � T satÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

�ðhT‘i‘ � T satÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

; at A‘s ð46Þ

n‘s � k‘reTT‘ ¼ n‘s � ksreTTs

þ n‘s � ksrhTsis|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

� n‘s � k‘rhT‘i‘|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
source

; at A‘s

ð47Þ

0 ¼ r � ðksreTTsÞ

� e�1
s

1

V

Z
As‘

ns‘ � ksreTTs dA

 
þ 1

V

Z
Asg

nsg � ksreTTs dA

!
;

in the s-phase ð48Þ

Here we have decomposed the boundary conditions

in a convenient form in order to introduce the phase

change temperature. In this problem, we have identified

six terms as macroscopic source terms since they act as

generators of the spatial deviation temperatures [61].

Given the six sources in the closure problem, we can

follow previous studies [18,53,55,73] and the above dis-
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cussion to express the spatial deviation temperatures in

terms of the macroscopic source terms according to the

following linear representationeTTg ¼ �sg‘iðhT‘i
‘ � T satÞ � sggiðhTgi

g � T satÞ
� sgsiðhTsi

s � T satÞ þ bg‘ � rhT‘i‘ þ bgg � rhTgig

þ bgs � rhTsis ð49Þ

eTT‘ ¼ �s‘‘iðhT‘i
‘ � T satÞ � s‘giðhTgi

g � T satÞ

� s‘siðhTsi
s � T satÞ þ b‘‘ � rhT‘i‘ þ b‘g � rhTgig

þ b‘s � rhTsis ð50Þ

eTTs ¼ �ss‘iðhT‘i
‘ � T satÞ � ssgiðhTgi

g � T satÞ

� sssiðhTsi
s � T satÞ þ bs‘ � rhT‘i‘ þ bsg � rhTgig

þ bss � rhTsis ð51Þ

The variables ss‘i, bs‘, etc., are the closure variables or the
mapping variables that realize an approximate solution

of the coupled equations. We remind the reader that in

doing so we have neglected in the analysis possible

transient phenomena as well as second order terms in

the above expansions, and numerical experiments will be

required to test the applicability of the given approxi-

mations. A limited validation will be proposed later in

this paper in the case of purely diffusive problems. The

nomenclature used for the mapping scalars is such that

the superscript always identifies the phase in which the

function is defined, while the subscript always indicates

which temperature difference is being mapped onto a
Fig. 2. Unit cell of a spatially period
spatial deviation. For example, ss‘i refers to the scalar

field that maps ðhT‘i‘ � T satÞ onto eTTs where the subscript

�i’ refers to the interface temperature T sat. For the

mapping vectors, the first subscript always identifies the

phase in which the function is defined, while the second

subscript always indicates which temperature gradient is

being mapped onto a spatial deviation. For example, bs‘
refers to the vector field that maps rhT‘i‘ onto eTTs.

The closure variables are solution of six pore-scale

boundary value problems, the so-called closure prob-

lems, which are given in appendix. When solving the

closure problems, it is assumed that the porous medium

can be represented by a periodic system as shown in Fig.

2. In this case, the period stands for the averaging vol-

ume and closure problems have to be solved over rep-

resentative unit cells of the three-phase system under

consideration with periodic boundary conditions. The

interested reader is referred to [53,55] for a full discus-

sion about the use of periodic unit cells and its validity

regarding ordered and disordered systems.

It is important to keep in mind that the quasi-steady

assumption implies that the closure variables, and the

effective properties are calculated for different, arbitrary

velocity fields and interface topology but do not take

into account the historical evolution of liquid–vapor

interfaces, for instance the effects of moving contact

lines. Some history effects associated to transient diffu-

sion can eventually be recovered with an unsteady clo-

sure as previously discussed (see for instance [47]) for

two-phase systems in the purely diffusive case. Results of
ic model of a porous medium.
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this study indicate that the steady-state closure is suffi-

cient, in most cases, in comparison to the more com-

plicated case of the unsteady closure. Such a result

cannot be applied directly to the three-phase systems

with liquid–vapor phase change mainly because the two-

phase flow problem is considerably much more com-

plicated. Therefore, an extension to this work appears to

be a challenging problem and seems to be premature.

While we have discussed the historical effects associated

with transient diffusion, we are now in a position to

discuss the historical effects associated to the moving

interfaces. Assuming the geometry of the interface at a

given time fixes the volume fractions and the solution of

the closure problems, i.e., the effective properties, which

we will denote at this time as Keff . The theory gives re-

lationships such as

t ! e‘ðtÞ; . . .
KeffðtÞ; . . .

�
ð52Þ

and this is not equivalent to

Keff ¼ Keffðe‘; . . .Þ ð53Þ

which would give a fully closed theory. In principle,

different history of the interface evolution may lead to

the same volume fractions with very different effective

properties values. This important effect must be checked

in future developments. At this time, we will remember

that the functional dependence Keff ¼ Keffðe‘; . . .Þ we

may construct is entirely associated to the assumption

made for the phases repartition.
5. Closed form of the averaged equations

Given the representations Eqs. (49)–(51), we are now

in a position to obtain a closed form of the macroscopic

transport equations (34)–(36). For the g-phase, use of

the representation for eTTg Eq. (49) in the volume aver-

aged equation (34), leads to the following closed form

egðqCpÞg
ohTgig

ot
þ ðqCpÞghvgi � rhTgig

�r � ½dg‘iðhT‘i
‘ � T satÞ� � r � ½dggiðhTgi

g � T satÞ�
� r � ½dgsiðhTsi

s � T satÞ� � ugg � rhTgig � ug‘ � rhT‘i‘

� ugs � rhTsis

¼ r � ðKgg � rhTgig þ Kg‘ � rhT‘i‘ þ Kgs � rhTsisÞ
� reg � kgrhTgig � _mmCpgðhTgig � T satÞ
� ðhg‘‘i þ hgs‘i ÞðhT‘i

‘ � T satÞ � ðhg‘gi þ hgsgi ÞðhTgi
g � T satÞ

� ðhg‘si þ hgssi ÞðhTsi
s � T satÞ ð54Þ

In this equation, the effective transport coefficients such as

Kgg, h
g‘
‘i , etc., are related to the pore-scale physics through

the six closure problems given in appendix. The defini-

tions of these coefficients are also reported in appendix.

Kgg, Kg‘ and Kgs refer to the effective thermal dispersion
tensors. They have a contribution from both conduction

and hydrodynamic dispersion, and are defined by Eqs.

(B.1)–(B.3). It must be noticed that the expressions for the

thermal dispersion tensors take explicitly into account the

boundary conditions at the liquid–vapor interface that

appear in the closure problems. The thermal dispersion

tensor Kgg is referred to as the dominant thermal disper-

sion tensor while Kg‘ and Kgs are referred to as the coup-

ling thermal dispersion tensors [61]. In Eqs. (B.2) and

(B.3) given in appendix, the first two terms represent

contribution from tortuosity while the last term repre-

sents the hydrodynamic thermal dispersion contribution.

The dominant thermal dispersion tensor has an addi-

tional contribution from thermal diffusion represented by

the first term in Eq. (B.1). Because their form is similar to

the traditional macroscopic convective term, the three

transport coefficients ugg, ug‘ and ugs in Eq. (54) are called

velocity-like coefficients and are defined from closure

problems IV, V, VI by Eqs. (B.10)–(B.12). The other ef-

fective properties are characteristic of non-equilibrium

models [18,53,55,73]. The three effective coefficients d
g
‘i,

d
g
gi and d

g
si represent the so-called additional velocity-like

coefficients and are defined by Eqs. (B.13)–(B.15). Here

again, these coefficients are defined in accordance with

the boundary conditions at the closure level. The others

coefficients that appear in Eq. (54) hg‘‘i , etc., are the heat
transfer coefficients and are defined directly from clo-

sure problems I, II, III. Equations analogous to Eq.

(54) describe the intrinsic phase average temperatures for

the ‘-phase and the s-phase, and these equations are given
by

e‘ðqCpÞ‘
ohT‘i‘

ot
þ e‘ðqCpÞ‘hv‘i

‘ � rhT‘i‘

�r � ½d‘‘iðhT‘i
‘ � T satÞ� � r � ½d‘giðhTgi

g � T satÞ�

� r � ½d‘siðhTsi
s � T satÞ� � u‘g � rhTgig � u‘‘ � rhT‘i‘

� u‘s � rhTsis

¼ r � ðK‘g � rhTgig þ K‘‘ � rhT‘i‘ þ K‘s � rhTsisÞ

� re‘ � k‘rhT‘i‘ þ _mmCp‘ðhT‘i‘ � T satÞ

� ðh‘g‘i þ h‘s‘i ÞðhT‘i
‘ � T satÞ � ðh‘ggi þ h‘sgiÞðhT g

g i � T satÞ

� ðh‘gsi þ h‘ssi ÞðhTsi
s � T satÞ ð55Þ

esðqCpÞs
ohTsis

ot
�r � ½ds‘iðhT‘i

‘ � T satÞ�

� r � ½dsgiðhTgi
g � T satÞ� � r � ½dssiðhTsi

s � T satÞ�
� usg � rhTgig � us‘ � rhT‘i‘ � uss � rhTsis

¼ r � ðKsg � rhTgig þ Ks‘ � rhT‘i‘ þ Kss � rhTsisÞ
� res � ksrhTsis � ðhs‘‘i þ hsg‘i ÞðhT‘i

‘ � T satÞ
� ðhs‘gi þ hsggi ÞðhTgi

g � T satÞ � ðhs‘si þ hsgsi ÞðhTsi
s � T satÞ

þ esh-sis ð56Þ
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Compared to the traditional heuristic models, the cou-

pling between the three equations appears to be much

more complex not only because of the distribution of

inter-continuum heat fluxes but also because of addi-

tional diffusion-like and convective-like coupling terms.

We expect thermal dispersion tensors and heat exchange

coefficients to be the dominant contributions in Eqs.

(54)–(56). Analytical expressions for the additional

convective terms are given in appendix in the case of a

simple stratified unit cell and results show that the lon-

gitudinal components have a negligible contribution

compared to the traditional term hvgi � rhTgig as was

observed in [57]. However it is not clear whether these

additional convective terms are of some importance in

practical cases. For two-phase materials, Zhang and

Huang [74] have calculated analytically these terms for

two simplified unit cells and have studied their impact in

a two-equation model. It is shown that the effects of the

additional convective terms may be important or insig-

nificant depending on the unit cell considered and the

authors conclude that the importance of these terms

remains to be examined for more complex unit cells. On

the other hand, Quintard et al. [53] have calculated nu-

merically the closure problems associated with a two-

equation description for two and three-dimensional unit

cells. The results indicate that the non-traditional terms

might be important for a limited range of the cell P�eeclet
numbers. The closure problems IV, V, VI given in ap-

pendix provide a framework to determine the velocity-

like coefficients that appear in the three-equation model

but in this paper we follow [52] and we assume that the

additional convective terms do not play a very impor-

tant role in the heat transfer process. If we adopt this

simplification, the three-equation model may be written

as
egðqCpÞg
ohTgig

ot
þ ðqCpÞghvgi � rhTgig

¼ r � ðKgg � rhTgig þ Kg‘ � rhT‘i‘ þ Kgs � rhTsisÞ

� reg � kgrhTgig � _mmCpgðhTgig � T satÞ

� ðhg‘‘i þ hgs‘i ÞðhT‘i
‘ � T satÞ � ðhg‘gi þ hgsgi ÞðhTgi

g � T satÞ

� ðhg‘si þ hgssi ÞðhTsi
s � T satÞ ð57Þ
e‘ðqCpÞ‘
ohT‘i‘

ot
þ ðqCpÞ‘hv‘i � rhT‘i‘

¼ r � ðK‘g � rhTgig þ K‘‘ � rhT‘i‘ þ K‘s � rhTsisÞ

� re‘ � k‘rhT‘i‘ þ _mmCp‘ðhT‘i‘ � T satÞ

� ðh‘g‘i þ h‘s‘i ÞðhT‘i
‘ � T satÞ � ðh‘ggi þ h‘sgiÞðhTgi

g � T satÞ

� ðh‘gsi þ h‘ssi ÞðhTsi
s � T satÞ ð58Þ
esðqCpÞs
ohTsis

ot
¼ r � ðKsg � rhTgig þ Ks‘ � rhT‘i‘ þ Kss � rhTsisÞ
� res � ksrhTsis � ðhs‘‘i þ hsg‘i ÞðhT‘i

‘ � T satÞ
� ðhs‘gi þ hsggi ÞðhTgi

g � T satÞ � ðhs‘si þ hsgsi ÞðhTsi
s � T satÞ

þ esh-sis ð59Þ

We recall that Eqs. (57)–(59) constitute a simplified form

of the three-equation model where it has been assumed

that the non-traditional convective terms have a negli-

gible impact on the macroscopic heat transfer process.

At this point, the main difference between Eqs. (57)–(59)

and the traditional three-equation models appears

through the crossing thermal dispersion tensors. From a

practical point of view, it is often assumed that the dif-

fusive terms can be lumped into a single term in each

transport equation, for instance for the g-phase:

Kgg � rhTgig þ Kg‘ � rhT‘i‘ þ Kgs � rhTsis ’ K�
g � rhTgig

ð60Þ

This assumption greatly simplifies the numerical treat-

ment of the coupled macroscopic transport equations

and is largely used in practical applications of two and

three-equation models. The simplification represented

by Eq. (60) is obviously valid when the macroscopic

temperature gradients are sufficiently close to each

other. Such a condition, referred to as local gradient

equilibrium [58], is rather difficult to evaluate. It has

been shown for a two-equation description [55] that the

diffusive lumping Eq. (60) represents a good approxi-

mation for macroscopic one-dimensional problems but

it is beyond the scope of this paper to repeat the analysis

for the three-equation model.
6. Closed form of the mass rate of evaporation

We recall that the liquid–vapor interface temperature

is fixed at the equilibrium saturation temperature and

thus the boundary condition, Eq. (12), is an auxiliary

condition that can be useful to determine the mass rate

of evaporation. Using the mass balance equation (3), we

first arrange the enthalpy jump condition Eq. (12) as

ng‘ � qgðhg � h‘Þðvg � wÞ ¼ ng‘ � ðkgrTg � k‘rT‘Þ; at A‘g

ð61Þ

We focus on the left-hand side of Eq. (61) and we in-

troduce the point enthalpy–temperature relationships

(26) and (27) using the boundary conditions Eq. (11),

this leads to

ng‘ � qgðhg � h‘Þðvg � wÞ ¼ ng‘ � qgDhðvg � wÞ; at A‘g

ð62Þ
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where Dh ¼ hsatg � hsat‘ represents the latent heat of va-

porization. Using this result and ignoring variations of

Dh within the averaging volume, the mass rate of

evaporation definition Eq. (17) allows to express the

area average of the left-hand side of Eq. (61) as

1

V

Z
Ag‘

ng‘ � qgðhg � h‘Þðvg � wÞdA ¼ � _mmDh ð63Þ

At this point, we have developed the auxiliary condition

Eq. (12) to obtain the following expression for the mass

rate of evaporation at the macroscopic level

_mmDh ¼ 1

V

Z
Ag‘

ng‘ � ðk‘rT‘ � kgrTgÞdA ð64Þ

This result clearly indicates that the determination of the

phase change rate _mm is equivalent to the calculation of

heat transfers between fluid phases.

When using a thermal equilibrium model, the situa-

tion is quite different. The assumption of thermal equi-

librium is rather useful, even though it cannot exist

strictly. Heat transfers between the phases are assumed

to be infinitely fast compared to other phenomena.

When local thermal equilibrium is assumed to be valid,

the three-phase system can be described by a single

spatial average temperature hT i and the following

approximation can be used hT i ’ hTgig ’ hT‘i‘ ’ hTsis.
Particularly, when phase change occurs in a single-

component three-phase system, the thermodynamic

equilibrium condition Eq. (11) implies that the two-

phase region is nearly isothermal, that is hT i ’ T sat. As a

consequence, the thermal energy equation is replaced by

an equation for the liquid volume fraction in the two-

phase region while the energy equation represents a

temperature equation in the single fluid phases. Such a

formulation has been proposed by Wang and Becker-

man [65] on the basis of the so-called two-phase mixture

model. For steady one-dimensional two-phase flow in-

duced by volumetric heating, this model reduces to the

Lipinski model [45] which has been extensively used to

study debris bed coolability in the framework of severe

nuclear reactor accidents analysis. For such a model, the

energy equation reduces to _mm ¼ h-si=Dh in the isother-

mal two-phase region, while _mm ¼ 0 must be specified for

hT i 6¼ T sat in the single fluid phases to describe for in-

stance post-dryout heat transfer [22].

In the case of a two-temperature model, it is generally

assumed that both liquid and vapor phases can be de-

scribed in terms of a single fluid average temperature

hTfif [63] such as hTfif ’ hTgig ’ hT‘i‘, that is local

thermal equilibrium between fluid phases. In this case,

owing to the thermodynamic equilibrium condition, one

has again during phase change hTfif ’ T sat. A similar

development as for the one-temperature model allows to

simplify the fluid energy equation in the two-phase re-

gion as _mmDh ¼ hfsðhTsis � T satÞ where hfs is the fluid to
solid heat transfer coefficient. It must be kept in mind

that this expression applies only to regions where both

the liquid and vapor volume fractions are non-zero and

once again _mm must be set to zero in the single fluid

phases when hTsis 6¼ T sat in the case of a constant heat

transfer coefficient. This expression for the mass rate of

evaporation has been used for instance by D�eecossin [25]

within the framework of a heuristical two-equation

model that does not make the local thermal equilibrium

assumption but assumes that the liquid phase is nearly

isothermal in equilibrium with the phase change tem-

perature. In this sense, this model can be viewed as a

three-temperature two-equation model. If one returns to

traditional two-equation models, it must be noted that

the two-temperature description cannot take into ac-

count overheating and undercooling of the fluid phases

and also the associated evaporation and condensation

respectively owing to the assumption hTgig ’ hT‘i‘. This
contrasts with the use of a three-temperature description

for which the heat flux to the fluid may have three dif-

ferent effects. This heat flux may indeed heat or cool

both the vapor and the liquid phases and induce evap-

oration or condensation. Because of this, it is not pos-

sible to obtain a simple expression of the phase change

rate as for one and two-temperature models. Some

authors overcome this problem by considering only the

two macroscopic continua associated with the fluid

phases and, as a result, they propose the following form

for the mass rate of evaporation [3,51]:

_mmDh ¼ hgiðhTgig � T satÞ þ h‘iðhT‘i‘ � T satÞ ð65Þ

This relation is the simplest form that reflects the esti-

mate of the right-hand side of Eq. (64) but indicates that

heat transfers with the solid phase have a direct impact

on the fluid temperatures and only an indirect impact on

the evaporation rate. It appears as a particular case of a

more general formulation which should take the form

_mmDh¼hgiðhTgig�T satÞþh‘iðhT‘i‘�T satÞþhsiðhTsis�T satÞ
ð66Þ

Such a formulation involving the three macroscopic

driving temperature differences has been proposed by

Berthoud and Valette [13] and Likhanski et al. [44] on

the basis of a heuristic approach. In the approach pro-

posed in these references, the expression for _mm is derived

in a consistent manner with the non-equilibrium terms

that appear in the macroscopic thermal energy transport

equations. The problem comes from the distribution of

the macroscopic heat flux between the three continua

(i.e. hgi, h‘i and hsi). It depends, as a first approximation,

on the distribution of contact area and we refer to the

introduction of this paper for the difficulties associated

with the determination of macroscopic heat fluxes.

In this paper, we follow the same idea developed in

[35,60] to obtain a closed form of the mass rate of
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evaporation using the method of volume averaging. We

recall that _mm is given by Eq. (64) and we now focus on

the right-hand side of this relation. First, we decompose

the point temperatures Tg and T‘ according to Eq. (14)

using the representations for the spatial deviations

temperatures eTTg and eTT‘ given by Eqs. (49) and (50).

Then, from the definition of the effective transport co-

efficients, the right-hand side of Eq. (64) takes the form

1

V

Z
Ag‘

ng‘ � ðk‘rT‘ � kgrTgÞdA

¼ 1

V

Z
Ag‘

ng‘ dA � ðk‘rhT‘i‘ � kgrhTgigÞ

� ðc‘g‘g þ cg‘ggÞ � rhTgig � ðc‘g‘‘ þ cg‘g‘Þ � rhT‘i‘

� ðc‘g‘s þ cg‘gsÞ � rhTsis þ ðh‘g‘i þ hg‘‘i ÞðhT‘i
‘ � T satÞ

þ ðh‘ggi þ hg‘gi ÞðhTgi
g � T satÞ þ ðh‘gsi þ hg‘si ÞðhTsi

s � T satÞ
ð67Þ

After extensive use of the boundary conditions at the

liquid–vapor interface that appear in closure problems I,

II, III, IV, V, VI and from the definitions of the velocity-

like coefficients, one can simplify this result and we fi-

nally arrive from Eqs. (64) and (67) at the following

closed form of the mass rate of evaporation

_mmDh¼ ðkgreg � u�gÞ � rhTgig þ ðk‘re‘ � u�‘Þ � rhT‘i‘

þ ðksres � u�s Þ � rhTsis þ ðh‘g‘i þ hg‘‘i ÞðhT‘i
‘ � T satÞ

þ ðh‘ggi þ hg‘gi ÞðhTgi
g � T satÞ þ ðh‘gsi þ hg‘si ÞðhTsi

s � T satÞ
ð68Þ

where we have adopted the following notations:

u�g ¼ u‘g þ ugg þ usg; u�‘ ¼ u‘‘ þ ug‘ þ us‘;

u�s ¼ u‘s þ ugs þ uss ð69Þ

One may notice that when the volume fraction gradients

and the pseudo-convective contributions are negligible,

the mass rate of evaporation given by Eq. (68) takes a

form similar to those proposed in heuristic models.
7. Discussion

The three macro-scale equations, Eqs. (54)–(56),

obtained from the volume averaging theory represent a

generalized quasi-steady three-equation model for the

macroscopic description of two-phase flow heat and

mass transfer in porous media in the case of local ther-

mal non-equilibrium. We recall here that the word

quasi-steady refers to the fact that the effective transport

coefficients depend on the physical properties as well

as the pore-scale geometry but do not include some

possible history effects. The methodology used to de-

rive the macro-scale model has two important fea-
tures. First, starting from the pore-scale description,

the use of an up-scaling theory allows to clearly identify

the main difficulties associated with the macro-scale

description. The second feature that represents a great

advantage of the method is to provide closure problems

that give an explicit relationship between the lower

scale and the upper scale. This allows to determine

all the effective coefficients from the pore-scale descrip-

tion.

Regarding the difficulties associated with the macro-

scale description, we first briefly recall below the main

approximations that have led to the fully closed three-

equation model.

1. First, assuming that the heat transfer problem could

be decoupled from the two-phase flow problem, we

have made the assumption that the flow was quasi-

static meaning that liquid–vapor interfaces behave

as stationary at the pore-scale.

2. Next, on the basis of the coupled equations formed

by the macro-scale averaged equations and the

micro-scale ones and neglecting the impact of the

phase change rate, we have proposed a quasi-steady

approximation which consists in representing the spa-

tial deviations as a first order expansion of the mac-

roscopic source terms.

Hence, it is clear at this point that the three-equation

model has limitations which correspond to the approx-

imations listed above and we present below some com-

ments concerning the use of these approximations.

• While the quasi-static approximation may be physi-

cally relevant for some transport processes with

phase change in porous media (see for instance

[17]), it is obviously quite debatable for liquid–vapor

systems especially for local thermal non-equilibrium

situations. However, its impact on the quality of

the macroscopic description still remains an open

question. Indeed, as indicated in Section 2, the quasi-

static approximation is fully consistent with the usual

generalized Darcy’s laws which produce nevertheless

a satisfactory description of the macroscopic behav-

ior over a large range of problems involving non-qua-

si-static conditions. A possible explanation would be

a spatiotemporal ergodicity for which the spatial av-

erage over a given elementary volume containing a

lot of interfaces would lead implicitly to a time aver-

age of the interface movements and as a result they

would evolve as quasi-static. A complete analysis

on the domain of validity of a quasi-static theory rep-

resents obviously an extremely challenging task.

Here, we just note that, from a practical point of

view, a quasi-static theory may produce satisfactory

results even for situations involving non-quasi-static

flows.
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• When looking at the coupled problem for the

averaged temperatures and deviations, even if the

quasi-static approximation leads to important simpli-

fications from the macro-scale description point of

view, it must be noted that the phase change rate still

remains at the closure level. This is clear when return-

ing to the definition, Eq. (17), for the mass rate of

evaporation and by noticing that even if the quasi-

static approximation allows to neglect the impact of

the speed of displacement of the interface, the liquid

or vapor velocity at the liquid–vapor interface is not

necessarily zero. At this time, we are not ready to ex-

amine the significance of the phase change rate at

the closure level mainly because of a lack of quanti-

tative data. Hence, we have decided here to neg-

lect the impact of the phase change rate on the

spatial deviations in order to obtain a first approxi-

mate solution of the coupled problem. We acknowl-

edge that such a simplifying assumption may result

in underestimated macro-scale heat transfers but we

insist on the fact that this does not mean that the

phase change rate is neglected at the macroscopic

level.

• While we have discussed some inherent difficulties in

multiphase up-scaling problems, we now turn to the

quasi-steady approximation represented by Eqs.

(49)–(51) which leads to the fully closed averaged

equations. As previously discussed in Section 4, the

quasi-steady description corresponds to a first order

approximation of the mixed micro-scale macro-scale

problem without accounting for memory effects. A

direct consequence is that macro-scale heat ex-

changes between continua are written as the product

of a constant heat transfer coefficient and a driving

force represented by an averaged temperature differ-

ence. This rough description of the transient behavior

is based on the fact that the spatial deviations in Eqs.

(40)–(48) are assumed to evolve as quasi-steady in

comparison to the averaged values. This is expressed

by the constraints (39) involving a characteristic time

of the process under consideration. Hence, a more

thorough knowledge of this characteristic time is

required to examine the validity of a quasi-steady de-

scription. Unfortunately, following previous develop-

ments conducted in a purely diffuse case [59], the

validity of these constraints appears rather obscure.

Furthermore, numerical experiments carried out for

two-phase systems [58] have shown a strong impact

of the pore-scale topology as well as phase reparti-

tion, impact which is difficult to take into account

through some time or space characteristic scales. As

a result, a general discussion about the validity of

the constraints (39) is extremely difficult and, in most

cases, the validity of a quasi-steady approximation is

examined through pore-scale numerical simulations.

In this work, we will follow the same approach and
we will test the theory versus pore-scale numerical ex-

periments.

Giving these approximations, the resulting macro-scale

equations may be seen as a generalization of existing quasi-

steady three-equation models obtained from a heuristic

approach. As noticed in Section 5, the main differences are

the existence of additional terms represented by diffusion-

like and convection-like terms and a coupling between the

macroscopic continua that seems to be more complex

through cross-dispersion and cross-convection terms as

well as macro-scale heat exchanges. One of the attractive

features of the proposed three-equation model lies in the

derivation of a closed form of the evaporation rate at the

closure level without any additional phenomenological

relation. This form has been obtained in a way which is

fully consistent with the approximate solution proposed at

the closure level and it is interesting to note that it exhibits

some links with those proposed in heuristic models.

Moreover, it can be shown [27] that this three-equation

model is fully compatible with the two- and the one-

equation models without any additional relations between

the effective coefficients, especially the heat exchange co-

efficients. We recall here that the two-equation model re-

fers generally to the one obtained when the fluid average

temperatures, liquid and vapor, are assumed to be very

close to each other. This corresponds to the most standard

case but obviously other two-equation models can be

obtained. Even if it is premature to perform a full com-

parison with the usual three-equation models, the pro-

posed macro-scale description is certainly improved

mainly because of the additional terms and a more com-

plex coupling between the averaged equations. On the

other hand, the price we have to pay for this improved

description is the increased number of the effective trans-

port coefficients. Here, a great advantage of the up-scaling

theory lies in the possibility of determining all these coef-

ficients from pore-scale characteristics through the solu-

tion of the six closure problems.

As indicated in Section 4, the closure problems have

to be solved over a representative unit cell of the system

under consideration. This unit cell should be as complex

as needed to take into account as many informations as

possible concerning the characterization of the system

(e.g. matrix structure, liquid–vapor interfaces topology,

two-phase flow regime, etc.). Dealing with very complex

unit cells represent a very complicated task and goes

beyond the scope of this paper. In order to perform a

preliminary test of the theory, we present in this paper a

study of relatively simple unit cells, which will provide

first estimates of the effective properties. Moreover, we

will see in the next section that it is rather easy for these

simplified geometries to test the theory versus direct

pore-scale simulations. Some results are presented in

appendix for a stratified system and a capillary-like

porous structure. The corresponding unit cells are
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shown in Figs. 10 and 12 and are denoted as the strat-

ified and the Chang’s cells respectively. For such unit

cells, two typical phases repartition may be considered,

namely the s–‘–g and the s–g–‘ repartitions. The first

is classic for non-saturated media and refers to liquid

being the wetting phase while the latter is more specific

to boiling situations such as film boiling and refers to

vapor being the ’’wetting’’ phase. As expected, for a

given volume fraction e‘, there is a strong impact of the

phases repartition on the effective properties. This em-

phasized the difficulties that one may encounter when

dealing with a fully closed theory as discussed in Section

4. Indeed, when performing macro-scale calculations,

one is faced with the problem of determining the most

relevant repartition on the basis of some macro-scale

selection criteria. An analysis about the meaning of each

repartition for the stratified cell is carried out in [27] by

returning to the pore-scale temperature fields through

the representations (49)–(51) and by discarding the

macroscopic temperature gradients. In this case, it is

shown as first approximation that the s–‘–g configura-

tion corresponds rather to condensation situations while

the s–g–‘ one corresponds rather to vaporization situa-

tions. From a practical point of view, this analysis sug-

gests that both the volume fraction e‘ and the sign of the

difference between hTsis and the saturation temperature

would be possible candidates to play the role of a se-

lection criterion. Although this analysis is quite limited

owing to the simplifying assumptions and the simplicity

of the stratified unit cell, it is instructive and it can serve

as a starting point to develop useful transition laws for

the effective coefficients. The interested reader is referred

to [11] and [30] for some practical illustrations involving

macro-scale calculations.

To complete the above discussion, we now turn back

to the determination of the effective coefficients for more

complex unit cells than those considered in this paper.

As previously mentioned, the unit cell can be in principle

as complex as needed to capture most of the features of

a real system. For such more sophisticated unit cells, the

route to obtain the effective coefficients is as follows:

i(i) for a given periodic unit cell which defines the geo-

metry for the solid phase, solve first the two-phase

flow problem to provide the required velocity field

and the interface topology,

(ii) then solve numerically the six closure problems and

compute the effective coefficients.

Here, one must keep in mind that this route lies

within the framework of a fully closed theory and as a

result, the calculations are carried out for various arbi-

trary liquid volume fractions and macroscopic velocities

or pressure gradients as well as phases repartition but

without being interested in the historical evolution of the

liquid–vapor interface. While the fully closed theory has
its previously discussed limitations, it remains of a great

practical interest and it can serve to assess the impact of

several pore-scale parameters on the effective coeffi-

cients. Returning to the route (i)–(ii), the first step can be

carried out by performing a direct numerical simulation

of the two-phase flow over the periodic unit cell. This

can be accomplished by means of some well known ef-

ficient methods for simulating small-scales interfacial

phenomena such as front-tracking, volume-of-fluid or

diffuse-interface methods. This methodology clearly il-

lustrates the interest of the up-scaling approach since

one can study the impact of several pore-scale charac-

teristics on the basis of a detailed description of both the

geometry and the pore-scale two-phase flow structure.

Such developments are currently under way to generate

numerical data for various pore-scale configurations and

we refer the reader to [27] for some illustrations. From

these calculations, our objective is to develop numerical

correlations for the effective coefficients that can be used

for macro-scale applications. While the approach is very

attractive since it links the behavior of the effective co-

efficients with an accurate description of the pore-scale

physics, it must be pointed out that there are some

limitations regarding the complexity of the unit cells

owing to the evident computational limitations. In

practice, the use of a two-phase flow direct numerical

simulation is tractable for unit cells containing a rela-

tively small number of pores ranging typically from one

to around ten pores. From a practical point of view, this

may have important consequences regarding the be-

havior of the effective coefficients. Indeed, previous

works in the case of contaminants transport in porous

media [1,57] suggest that such unit cells may produce an

extremely complex behavior (e.g. highly non-linear be-

havior versus the liquid volume fraction and the cell

P�eeclet numbers, velocity orientation effects, etc.) while

more complex, random, geometries involving thousands

of pores may greatly simplify these complex features. It

is beyond the scope of this paper to address this problem

but several strategies can be develop to deal with very

complicated geometries such as ensemble averaging of

obtained results on simple geometries or as proposed by

Ahmadi et al. [1] the use of network models. Both ap-

proaches, simple and complex geometries, open very

interesting perspectives and call for further studies.
8. Numerical experiments for purely diffusive phase-

change problems

The validity of the macro-scale three-equation model

can be addressed according to two different ways,

through laboratory experiments or through numerical

‘‘experiments’’. The former refers to comparisons with

available experimental data while the latter uses direct

pore-scale calculations as a reference solution. In both of
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them, comparison is preferably performed in terms of

averaged temperatures owing to the evident complexity

associated with the experimental determination, or the

direct estimation from micro-scale calculations, of the

effective properties.

While comparisons with laboratory experiments rep-

resent obviously an important stage that cannot be

overlooked to assess the quality and the contribution of

the proposed macroscopic description, the analysis is

made limited mainly because of the difficulties associated

with the experimental measurements as pointed out in the

introduction. A typical illustration of these difficulties lies

in the flooding of a heat-generating porous bed which

represents a problem of considerable interest in nuclear

safety studies. Indeed, even though experimental results

reveal large macro-scale temperature differences, these are

rather difficult to determine from a quantitative point of

view. As a result, available experimental data for this class

of problems are often restricted to some overall quantities

of interest at the scale of the sample such as the critical

dryout heat flux or the steam flow rate at the top of the

bed. Other difficulties mentioned in the previous section

are encountered when dealing with full macro-scale cal-

culations and comparisons with laboratory experiments

for real systems. It is beyond the scope of this paper to

deal with these difficulties and we refer the reader to

B�eechaud et al. [11] and Fichot et al. [30] for a detailed

analysis and for practical applications using the proposed

three-equation model.

On the other hand, numerical experiments consisting

of pore-scale calculations used to determine averaged

temperatures represent very good tests for the theory

because pore-scale characteristics can be controlled pre-

cisely. To be more clear, numerical experiments provide

the most direct test of the theory since the pore-scale

equations are solved directly in the absence of some ad-

justable parameters.

Following the methodology outlined in Quintard

et al. [54] in the framework of two-equation models, we

focus here on purely diffusive processes with phase

change and we perform comparisons between the theo-

retical predictions using the three-equation model, and

the average of the direct solution of the pore-scale

equations for both the stratified and the Chang’s unit

cell presented in appendix. It must be emphasized that

the theoretical computations and the pore-scale ones

are carried out in a completely independent manner.

Therefore, such a comparison represents a strong test of

the proposed model and allows us to investigate the

impact of some of the simplifications that have been

made at the closure level.

8.1. Solution of the macro-scale equations

Even though purely diffusive processes with phase

change represent a very simplified case of what occurs in
real systems, the macro-scale problem remains quite

complicated in the sense that we must solve the three-

equation model together with the macro-scale mass and

momentum transport equations. In order to facilitate

the numerical experiments and to focus on the thermal

up-scaling problem, we assume the phase change does

not involve significant changes in pressure and hence we

impose the constraint of a constant pressure. In addition

we require that there is a constant macroscopic density

for both the vapor and the liquid phase so that qg ¼
q‘ ¼ q. Under these circumstances, the three-equation

model supplemented by a governing equation for the

liquid saturation S ¼ e‘=e is sufficient to describe the

whole macroscopic behavior. The liquid saturation gov-

erning equation can be obtained from either the vapor

continuity equation (18) or the liquid continuity equa-

tion (19) and reads

e
oS
ot

¼ � _mm
q

ð70Þ

On the other hand, if we make the additional assump-

tion that the system is infinite in all direction so that

there is no gradient of the averaged temperatures, the

three-equation model simplifies to

egðqCpÞg
ohTgig

ot
¼ � _mmC�

pgðhTgi
g � T satÞ � ðhg‘gi þ hgsgi ÞðhTgi

g � T satÞ
� ðhg‘si þ hgssi ÞðhTsi

s � T satÞ ð71Þ

e‘ðqCpÞ‘
ohT‘i‘

ot
¼ _mmC�

p‘ðhT‘i
‘ � T satÞ � h‘g‘i ðhT‘i

‘ � T satÞ

ð72Þ

esðqCpÞs
ohTsis

ot
¼ hgsgi ðhTgi

g � T satÞ þ hgssi ðhTsi
s � T satÞ þ esh-sis ð73Þ

Here the quantities C�
pg and C�

p‘ denote fictitious heat

capacities calculated from the volumetric heat capacities

ðqCpÞg and ðqCpÞ‘ respectively, divided by the common

density q. This definition allows us to maintain physical

values of the thermal diffusivity for both the vapor and

the liquid phase under the assumption of a constant

density. Finally, neglecting the macroscopic temperature

gradients, the phase change rate appearing in Eqs. (70)–

(72) reduces to

_mmDh ¼ h‘g‘i ðhT‘i
‘ � T satÞ þ hg‘gi ðhTgi

g � T satÞ

þ hg‘si ðhTsi
s � T satÞ ð74Þ

In these equations, we will use the appropriate heat ex-

change coefficients obtained for the stratified and the

Chang’s unit cells. In writing Eqs. (71)–(74), it must be

noted that some additional simplifications of the heat ex-

change coefficients arose because we have focussed on the



Table 1

Parameters for experiments with T sat ¼ 373 K and Dh ¼ 2:2�
106 J kg�1

Unit cells es ‘s [m]

0.6 0.01

Densities [kgm�3] qg q‘ qs

1000 1000 7000

Volumetric heat

capacities [Jm�3 K�1]

ðqCpÞg ðqCpÞ‘ ðqCpÞs
2· 103 4.2 · 106 3.5 · 106

Thermal conductivities

[Wm�1 K�1]

kg k‘ ks
0.025 0.68 17
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vapor-wetting pore-scale configuration denoted as s–g–‘
in the appendix. This is due to the fact that the considered

tests consist in evaporation processes and as indicated in

Section 7, this corresponds to a vapor-wetting case.

8.2. Numerical solution of the pore-scale equations

In this section we describe briefly how we obtain the

pore-scale temperature fields that will be averaged to

produce the reference values for the numerical experi-

ments. We recall here that under the previously listed as-

sumptions the numerical experiments focus on pore-scale

Stefan-like problems. At the pore-scale, the one-dimen-

sional heat-diffusion moving boundary value problem is

solved numerically using an enthalpy method. Hence, the

micro-scale problem to be solved is formulated as

oHðT Þ
ot

¼ r � ðkrT Þ þ cs-s; in V ð75Þ

n � rT ¼ 0; at oV ð76Þ

T ðt ¼ 0Þ ¼ T0 ð77Þ
in which V is the volume of the unit cell and cs is the

s-phase indicator function. In these equations, the volu-

metric enthalpy H, the temperature and the conduc-

tivity are distributions defined in accordance with the

thermal properties of the three phases. In Eq. (75), the

HðT Þ function is defined asHðT Þ ¼ ðqCpÞsT in the solid

phase while the enthalpy–temperature relationship reg-

ularization proposed in [28] is used in the liquid and the

vapor phases:

HðT Þ ¼

qC�
p‘T þ qDh

2
exp � jT�T sat j

DT�

� �
; T < T sat

qC�
p‘T

sat þ qDhþ qC�
pgðT � T satÞ

� qDh
2

exp � jT�T sat j
DTþ

� �
; T P T sat

8>>><>>>:
ð78Þ

where DT� and DTþ are the liquid–vapor front spread-

ing parameters. Using a similar regularization for the

conductivity distribution, the enthalpy equation is dis-

cretised by an implicit finite element method and is

solved by a Newton’s method. Because of the considered

unit cells symmetry, direct computations have been

performed on the half-cell 06 y6H=2 for the stratified

unit cell and 06 r6R for the Chang’s unit cell. It is

beyond the scope of this paper to describe the whole

numerical method and we refer the interested reader to

[27] for a detailed presentation. Here we will just note

that the spreading parameters have been adjusted with

grid refinements to achieve convergence results.

8.3. Comparison between theory and pore-scale simula-

tions

Two numerical experiments consisting in a heating

and a temperature relaxation problems were carried out
for the unit cells shown in Figs. 10 and 12. The pa-

rameters for these experiments are listed in Table 1.

Both the solid volume fraction es and the solid phase

characteristic length ‘s are the same for the two unit cells

considered but it must be pointed out that the unit cells

characteristic lengths are different because of ‘s ¼ Hes
for the stratified unit cell and ‘s ¼ 2R

ffiffiffiffi
es

p
for the Chang’s

unit cell.

The first experiment looks at a heating problem

starting with a saturated medium S ¼ 1, local thermal

equilibrium between the three phases, hTgig ¼ hT‘i‘ ¼
hTsis ¼ T sat, and volumetric heating in the solid phase

h-sis ¼ 107 Wm�3. The second experiment looks at a

temperature relaxation problem starting with an unsat-

urated medium without heating but with an initial ther-

mal non-equilibrium such as hT‘i‘ ¼ T sat, hTgig ¼ hT‘i‘ þ
30 K and hTsis ¼ hT‘i‘ þ 60 K. Using a linear profile for

the initialization of the pore-scale temperature field in

the vapor phase, the corresponding saturation values for

the stratified and the Chang’s unit cells are S ¼ 0:9 and

S ’ 0:88 respectively. Before looking at the results, it

must be noticed that the ‘‘experimental’’ front position is

obtained indirectly by reconstruction from the temper-

ature field because of the use of an enthalpy method.

The hTgig-experimental value is computed from both this

front position and the temperature field. As a conse-

quence, both the reference saturation and the reference

hTgig evolutions show some minor oscillatory behavior

which is an inherent characteristic of the enthalpy

method.

The comparison between the theoretical solutions

hTgig and hTsis obtained from the three-equation model

and the reference values obtained from the pore-scale

direct solution are reported in Figs. 3 and 4 for the first

experiment and in Figs. 5 and 6 for the second experi-

ment. For both experiments, the average liquid tem-

perature hT‘i‘ remains constant during the process at a

value hT‘i‘ ¼ T sat and is not plotted. The theoretical

prediction and reference saturation evolutions versus

time are reported in Figs. 7 and 8 for the heating and the

relaxation experiments respectively. These results show

that theoretical values are in very good agreement with



Fig. 3. Stratified unit cell: heating experiment (exp. 1). Fig. 5. Stratified unit cell: relaxation experiment (exp. 2).

Fig. 4. Chang’s unit cell: heating experiment (exp. 1).
Fig. 6. Chang’s unit cell: relaxation experiment (exp. 2).
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‘‘experimental’’ values despite the fact that both exper-

iments are strongly unsteady and the thermal diffusivi-

ties are highly contrasted. Obviously, the parameters

used for these experiments are not fully consistent with a

liquid–vapor system because of our simplifying as-

sumptions and as a result these experiments are mainly

illustrative. Nevertheless, these simple tests allow us to

illustrate the good behavior of the proposed approxi-

mate solution of the coupled micro-scale and macro-

scale equations and the validity of the non-equilibrium

model. These also confirm the practical interest of the

three-equation model to deal with overheated porous

structure reflooding problems where such large macro-
scale temperature differences are expected (see for in-

stance [49,72]). We must remind the reader that this is a

partial validation obtained for purely diffusive processes.

Work is under way to obtain direct numerical simula-

tions with convection processes.

In obtaining these results, one should keep in mind

that we have used the appropriate heat transfer coeffi-

cients obtained by solving the closure problems. At this

point, one may ask the question whether other coeffi-

cients would also give a correct answer ? In order to

clarify this point, we have repeated the heating experi-

ment for the stratified unit cell by multiplying the coef-

ficient hgsgi by a factor three. The results are reported in



Fig. 7. Saturation evolution versus time for the heating ex-

periment (exp. 1).

Fig. 8. Saturation evolution versus time for the relaxation ex-

periment (exp. 2).

Fig. 9. Time evolution of the macro-scale temperatures from

the three-equation model for the heating experiment on the

stratified unit cell. Comparisons between the appropriate value

for hgsgi and the a priori estimate 3hgsgi .
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Fig. 9 in terms of the g-phase and s-phase macro-scale

temperature evolutions versus time. Here again the ave-

rage liquid temperature is not plotted because it re-

mains equal to the saturation temperature during the

process. The results show a significant difference when

comparing to the original results obtained with the ap-

propriate heat transfer coefficient. This clearly illustrates

that the macro-scale behavior cannot be correctly cap-

tured with a priori estimates of the heat transfer coeffi-

cients and emphasizes the interest in using an up-scaling

theory.
9. Conclusion

In this paper, the method of volume averaging has

been used to derive a macroscopic model describing heat

transfer processes for liquid–vapor flows with phase

change in porous media. Under the classical quasi-

steady and quasi-static assumptions at the closure level,

the resulting macroscopic model is a three-equation

model involving relevant non-equilibrium terms in

which the saturation temperature appears explicitly. An

attractive feature of the scaling-up theory lies in the

derivation of a closed form of the evaporation rate at the

macroscopic level depending on the macroscopic tem-

peratures and the effective properties. The effective

transport coefficients are related to the pore-scale

physics through six closure problems that have to be

solved for representative unit cells. These closure prob-

lems have been solved for simple unit cells to provide

first estimates of the effective properties. For these unit

cells and for purely diffusive processes, theoretical pre-

dictions of the three-equation model and numerical ex-

periments are in very good agreement. This provides

support for the assumptions and the simplifications that

have been made at the closure level and illustrates the

practical interest of the three-equation model.
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Appendix A. Pore-scale closure problems

The pore-scale closure problems are obtained by in-

troducing the representations (49)–(51) into the gov-

erning equations for the deviations (40)–(48), collecting

all terms proportional to the six macroscopic source

terms such as ðhT‘i‘ � T satÞ, rhTgig, etc., and setting the

coefficients equal to zero. On the basis of the represen-

tations for the deviations, it must be emphasized that the

three conditions heTTgig ¼ heTT‘i‘ ¼ heTTsis ¼ 0 require that

the intrinsic phase average of the closure variables are

equal to zero, this provides additional relations for the

closure problems.

The first three closure problems are the boundary

value problems associated with the mapping variables

for ðhT‘i‘ � T satÞ, ðhTgig � T satÞ and ðhTsis � T satÞ, these
problems are listed below.

Problem I. ðhT‘i‘ � T satÞ mapping

ðqCpÞgvg � rsg‘i ¼ kgr2sg‘i � e�1
g ðhg‘‘i þ hgs‘i Þ; in the g-phase

ðA:1Þ

sg‘i ¼ 0; s‘‘i ¼ 1; at A‘g ðA:2Þ

ngs � ksrss‘i ¼ ngs � kgrsg‘i; sg‘i ¼ ss‘i; at Ags ðA:3Þ

ðqCpÞ‘v‘ � rs‘‘i ¼ k‘r2s‘‘i � e�1
‘ ðh‘g‘i þ h‘s‘i Þ; in the ‘-phase

ðA:4Þ

n‘s � k‘rs‘‘i ¼ n‘s � ksrss‘i; s‘‘i ¼ ss‘i þ 1; at A‘s ðA:5Þ

0 ¼ ksr2ss‘i � e�1
s ðhsg‘i þ hs‘‘i Þ; in the s-phase ðA:6Þ

Periodicity : s‘‘iðrþ liÞ ¼ s‘‘iðrÞ; sg‘iðrþ liÞ ¼ sg‘iðrÞ;
ss‘iðrþ liÞ ¼ ss‘iðrÞ; i ¼ 1; 2; 3 ðA:7Þ

Average : hs‘‘ii
‘ ¼ 0; hsg‘ii

g ¼ 0; hss‘ii
s ¼ 0 ðA:8Þ

We have adopted the following notations

hg‘‘i ¼
kg
V

Z
Ag‘

ng‘ � rsg‘i dA; hgs‘i ¼
kg
V

Z
Ags

ngs � rsg‘i dA

ðA:9Þ

h‘g‘i ¼
k‘
V

Z
A‘g

n‘g � rs‘‘i dA; h‘s‘i ¼
k‘
V

Z
A‘s

n‘s � rs‘‘i dA

ðA:10Þ

hsg‘i ¼
ks
V

Z
Asg

nsg � rss‘i dA ¼ �hgs‘i ;

hs‘‘i ¼
ks
V

Z
As‘

ns‘ � rss‘i dA ¼ �h‘s‘i ðA:11Þ
Problem II. ðhTgig � T satÞ mapping

ðqCpÞgvg � rsggi ¼ kgr2sggi � e�1
g ðhg‘gi þ hgsgi Þ; in the g-phase

ðA:12Þ
sggi ¼ 1; s‘gi ¼ 0; at A‘g ðA:13Þ

ngs � ksrssgi ¼ ngs � kgrsggi; sggi ¼ ssgi þ 1; at Ags

ðA:14Þ

ðqCpÞ‘v‘ � rs‘gi ¼ k‘r2s‘gi � e�1
‘ ðh‘ggi þ h‘sgiÞ; in the ‘-phase

ðA:15Þ

n‘s � k‘rs‘gi ¼ n‘s � ksrssgi; s‘gi ¼ ssgi; at A‘s ðA:16Þ

0 ¼ ksr2ssgi � e�1
s ðhsggi þ hs‘giÞ; in the s-phase ðA:17Þ

Periodicity : s‘giðrþ liÞ ¼ s‘giðrÞ; sggiðrþ liÞ ¼ sggiðrÞ;
ssgiðrþ liÞ ¼ ss‘iðrÞ; i ¼ 1; 2; 3 ðA:18Þ

Average : hs‘gii
‘ ¼ 0; hsggii

g ¼ 0; hssgii
s ¼ 0 ðA:19Þ

We have adopted the following notations

hg‘gi ¼
kg
V

Z
Ag‘

ng‘ � rsggi dA; hgsgi ¼
kg
V

Z
Ags

ngs � rsggi dA

ðA:20Þ

h‘ggi ¼
k‘
V

Z
A‘g

n‘g � rs‘gi dA; h‘sgi ¼
k‘
V

Z
A‘s

n‘s � rs‘gi dA

ðA:21Þ

hsggi ¼
ks
V

Z
Asg

nsg � rssgi dA ¼ �hgsgi ;

hs‘gi ¼
ks
V

Z
As‘

ns‘ � rssgi dA ¼ �h‘sgi ðA:22Þ
Problem III. ðhTsis � T satÞ mapping

ðqCpÞgvg � rsgsi ¼ kgr2sgsi � e�1
g ðhg‘si þ hgssi Þ; in the g-phase

ðA:23Þ

sgsi ¼ 0; s‘si ¼ 0; at A‘g ðA:24Þ

ngs � ksrsssi ¼ ngs � kgrsgsi; sgsi ¼ sssi � 1; at Ags ðA:25Þ

ðqCpÞ‘v‘ � rs‘si ¼ k‘r2s‘si � e�1
‘ ðh‘gsi þ h‘ssi Þ; in the ‘-phase

ðA:26Þ

n‘s � k‘rs‘si ¼ n‘s � ksrsssi; s‘si ¼ sssi � 1; at A‘s ðA:27Þ

0 ¼ ksr2sssi � e�1
s ðhsgsi þ hs‘si Þ; in the s-phase ðA:28Þ

Periodicity : s‘siðrþ liÞ ¼ s‘siðrÞ; sgsiðrþ liÞ ¼ sgsiðrÞ;
sssiðrþ liÞ ¼ sssiðrÞ; i ¼ 1; 2; 3 ðA:29Þ

Average : hs‘sii
‘ ¼ 0; hsgsii

g ¼ 0; hsssii
s ¼ 0 ðA:30Þ

We have adopted the following notations

hg‘si ¼
kg
V

Z
Ag‘

ng‘ � rsgsi dA; hgssi ¼
kg
V

Z
Ags

ngs � rsgsi dA

ðA:31Þ
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h‘gsi ¼
k‘
V

Z
A‘g

n‘g � rs‘si dA; h‘ssi ¼
k‘
V

Z
A‘s

n‘s � rs‘si dA

ðA:32Þ

hsgsi ¼
ks
V

Z
Asg

nsg � rsssi dA ¼ �hgssi ;

hs‘si ¼
ks
V

Z
As‘

ns‘ � rsssi dA ¼ �h‘ssi ðA:33Þ

The closure problems IV, V, VI are the boundary

value problems associated with the mapping variables

for rhTgig, rhT‘i‘ and rhTsis, these problems are listed

below.

Problem IV. rhTgig mapping

ðqCpÞgvg � rbgg þ ðqCpÞgevvg ¼ kgr2bgg � e�1
g ðcg‘gg þ cgsggÞ;

in the g-phase ðA:34Þ

bgg ¼ 0; b‘g ¼ 0; at A‘g ðA:35Þ

ngs � ksrbsg ¼ ngs � kgrbgg þ ngskg; bgg ¼ bsg; at Ags

ðA:36Þ

ðqCpÞ‘v‘ � rb‘g ¼ k‘r2b‘g � e�1
‘ ðc‘g‘g þ c‘s‘gÞ; in the ‘-phase

ðA:37Þ

n‘s � k‘rb‘g ¼ n‘s � ksrbsg; b‘g ¼ bsg; at A‘s ðA:38Þ

0 ¼ ksr2bsg � e�1
s ðcs‘sg þ csgsgÞ; in the s-phase ðA:39Þ

Periodicity : b‘gðrþ liÞ ¼ b‘gðrÞ; bggðrþ liÞ ¼ bggðrÞ;
bsgðrþ liÞ ¼ bsgðrÞ; i ¼ 1; 2; 3 ðA:40Þ

Average : hb‘gi‘ ¼ 0; hbggig ¼ 0; hbsgis ¼ 0

ðA:41Þ

We have adopted the following notations

cg‘gg ¼
kg
V

Z
Ag‘

ng‘ � rbgg dA;

cgsgg ¼
kg
V

Z
Ags

ngs � rbgg dA ¼ �csgsg �
kg
V

Z
Ags

ngs dA ðA:42Þ

c
‘g
‘g ¼

k‘
V

Z
A‘g

n‘g � rb‘g dA;

c‘s‘g ¼
k‘
V

Z
A‘s

n‘s � rb‘g dA ¼ �cs‘sg ðA:43Þ

cs‘sg ¼
ks
V

Z
As‘

ns‘ � rbsg dA; csgsg ¼
ks
V

Z
Asg

nsg � rbsg dA

ðA:44Þ
‘s gs ss
Problem V. rhT‘i‘ mapping

ðqCpÞgvg �rbg‘ ¼ kgr2bg‘� e�1
g ðcg‘g‘þ c

gs
g‘Þ; in the g-phase

ðA:45Þ
bg‘ ¼ 0; b‘‘ ¼ 0; at A‘g ðA:46Þ

ngs � ksrbs‘ ¼ ngs � kgrbg‘; bg‘ ¼ bs‘; at Ags ðA:47Þ

ðqCpÞ‘v‘ � rb‘‘ þ ðqCpÞ‘evv‘ ¼ k‘r2b‘‘ � e�1
‘ ðc‘g‘‘ þ c‘s‘‘Þ;

in the ‘-phase ðA:48Þ

n‘s � k‘rb‘‘ ¼ n‘s � ksrbs‘ � n‘sk‘; b‘‘ ¼ bs‘; at A‘s

ðA:49Þ

0 ¼ ksr2bs‘ � e�1
s ðcs‘s‘ þ c

sg
s‘Þ; in the s-phase ðA:50Þ

Periodicity : b‘‘ðrþ liÞ ¼ b‘‘ðrÞ; bg‘ðrþ liÞ ¼ bg‘ðrÞ;

bs‘ðrþ liÞ ¼ bs‘ðrÞ; i ¼ 1; 2; 3 ðA:51Þ

Average : hb‘‘i‘ ¼ 0; hbg‘ig ¼ 0; hbs‘is ¼ 0 ðA:52Þ

We have adopted the following notations

c
g‘
g‘ ¼

kg
V

Z
Ag‘

ng‘ � rbg‘ dA;

c
gs
g‘ ¼

kg
V

Z
Ags

ngs � rbg‘ dA ¼ �c
sg
s‘ ðA:53Þ

c
‘g
‘‘ ¼

k‘
V

Z
A‘g

n‘g � rb‘‘ dA;

c‘s‘‘ ¼
k‘
V

Z
A‘s

n‘s � rb‘‘ dA ¼ �cs‘s‘ �
k‘
V

Z
A‘s

n‘s dA ðA:54Þ

cs‘s‘ ¼
ks
V

Z
As‘

ns‘ � rbs‘ dA; c
sg
s‘ ¼

ks
V

Z
Asg

nsg � rbs‘ dA

ðA:55Þ
Problem VI. rhTsis mapping

ðqCpÞgvg � rbgs ¼ kgr2bgs � e�1
g ðcg‘gs þ cgsgsÞ; in the g-phase

ðA:56Þ

bgs ¼ 0; b‘s ¼ 0; at A‘g ðA:57Þ

ngs � ksrbss ¼ ngs � kgrbgs � ngsks; bgs ¼ bss; at Ags

ðA:58Þ

ðqCpÞ‘v‘ � rb‘s ¼ k‘r2b‘s � e�1
‘ ðc‘g‘s þ c‘s‘sÞ; in the ‘-phase

ðA:59Þ

n‘s � k‘rb‘s ¼ n‘s � ksrbss þ n‘sks; b‘s ¼ bss; at A‘s

ðA:60Þ

0 ¼ ksr2bss � e�1
s ðcs‘ss þ csgss Þ; in the s-phase ðA:61Þ

Periodicity : b‘sðrþ liÞ ¼ b‘sðrÞ; bgsðrþ liÞ ¼ bgsðrÞ;

bssðrþ liÞ ¼ bssðrÞ; i ¼ 1; 2; 3 ðA:62Þ

Average : hb i‘ ¼ 0; hb ig ¼ 0; hb is ¼ 0 ðA:63Þ
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We have adopted the following notations

cg‘gs ¼
kg
V

Z
Ag‘

ng‘ � rbgs dA;

cgsgs ¼
kg
V

Z
Ags

ngs � rbgs dA ¼ �csgss �
ks
V

Z
Asg

nsg dA ðA:64Þ

c
‘g
‘s ¼

k‘
V

Z
A‘g

n‘g � rb‘s dA;

c‘s‘s ¼
k‘
V

Z
A‘s

n‘s � rb‘s dA ¼ �cs‘ss �
ks
V

Z
As‘

ns‘ dA ðA:65Þ

cs‘ss ¼
ks
V

Z
As‘

ns‘ � rbss dA; csgss ¼
ks
V

Z
Asg

nsg � rbss dA

ðA:66Þ
Appendix B. Definitions of the effective transport coeffi-

cients

Thermal dispersion tensors
hTgig-equation:

Kgg ¼ egkgIþ
kg
V

Z
Ags

ngsbgg dA� ðqCpÞghevvgbggi ðB:1Þ

Kg‘ ¼
kg
V

Z
Ags

ngsbg‘ dA� ðqCpÞghevvgbg‘i ðB:2Þ

Kgs ¼
kg
V

Z
Ags

ngsbgs dA� ðqCpÞghevvgbgsi ðB:3Þ

hT‘i‘-equation:

K‘g ¼
k‘
V

Z
A‘s

n‘sb‘g dA� ðqCpÞ‘hevv‘b‘gi ðB:4Þ

K‘‘ ¼ e‘k‘Iþ
k‘
V

Z
A‘s

n‘sb‘‘ dA� ðqCpÞ‘hevv‘b‘‘i ðB:5Þ

K‘s ¼
k‘
V

Z
A‘s

n‘sb‘s dA� ðqCpÞ‘hevv‘b‘si ðB:6Þ

hTsis-equation:

Ksg ¼
ks
V

Z
As‘

ns‘bsg dAþ ks
V

Z
Asg

nsgbsg dA ðB:7Þ

Ks‘ ¼
ks
V

Z
As‘

ns‘bs‘ dAþ ks
V

Z
Asg

nsgbs‘ dA ðB:8Þ

Kss ¼ esksIþ
ks
V

Z
As‘

ns‘bss dAþ ks
V

Z
Asg

nsgbss dA ðB:9Þ

Velocity like coefficients
hTgig-equation:

ugg ¼ cg‘gg þ cgsgg ðB:10Þ
ug‘ ¼ c
g‘
g‘ þ c

gs
g‘ ðB:11Þ

ugs ¼ cg‘gs þ cgsgs ðB:12Þ

d
g
‘i ¼ ðqCpÞghevvgsg‘ii � kg

V

Z
Ags

ngss
g
‘i dA ðB:13Þ

d
g
gi ¼ ðqCpÞghevvgsggii � kg

V

Z
Ag‘

ng‘ dA� kg
V

Z
Ags

ngss
g
gi dA

ðB:14Þ

d
g
si ¼ ðqCpÞghevvgsgsii � kg

V

Z
Ags

ngss
g
si dA ðB:15Þ

hT‘i‘-equation:

u‘g ¼ c
‘g
‘g þ c‘s‘g ðB:16Þ

u‘‘ ¼ c
‘g
‘‘ þ c‘s‘‘ ðB:17Þ

u‘s ¼ c‘g‘s þ c‘s‘s ðB:18Þ

d‘‘i ¼ ðqCpÞ‘hevv‘s‘‘ii � k‘
V

Z
A‘g

n‘g dA� k‘
V

Z
A‘s

n‘ss‘‘i dA

ðB:19Þ

d‘gi ¼ ðqCpÞ‘hevv‘s‘gii � k‘
V

Z
A‘s

n‘ss
‘
gi dA ðB:20Þ

d‘si ¼ ðqCpÞ‘hevv‘s‘sii � k‘
V

Z
A‘s

n‘ss‘si dA ðB:21Þ

hTsis-equation:

usg ¼ cs‘sg þ csgsg ðB:22Þ

us‘ ¼ cs‘s‘ þ c
sg
s‘ ðB:23Þ

uss ¼ cs‘ss þ csgss ðB:24Þ

ds‘i ¼ � ks
V

Z
As‘

ns‘ss‘i dA� ks
V

Z
Asg

nsgss‘i dA ðB:25Þ

dsgi ¼ � ks
V

Z
As‘

ns‘ssgi dA� ks
V

Z
Asg

nsgssgi dA ðB:26Þ

dssi ¼ � ks
V

Z
As‘

ns‘sssi dA� ks
V

Z
Asg

nsgsssi dA ðB:27Þ
Appendix C. Results for one-dimensional unit cells

The six closure problems previously listed that provide

the effective properties of the three-equation model can be

solved numerically according to previous development

for two-equation models, see for instance Quintard et al.

[53]. Following Chella et al. [20], a direct numerical sim-

ulation of the two-phase flow at the pore-scale can be

used to provide the required velocity field and the inter-
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face position. Analytical solutions of closure problems

are also available in the case of simple unit cells. In this

section, some analytical results for effective properties are

presented for stratified systems and Chang’s unit cells.

Obviously, these unit cells cannot capture all the feature

of a real system, for instance the effect of the velocity field

and the complex topology of both liquid–vapor interface

and solid boundary. However, these simple unit cells are

instructive and allow to illustrate the behavior of the ef-

fective transport coefficients.
C.1. Stratified unit cell

The six closure problems were solved analytically for

the stratified unit cell represented in Fig. 10 following

the methodology outlined in [52]. Phases repartition of

such a unit cell are the s–‘–g configuration and the s–g–‘
configuration. The first refers to liquid being the wetting

phase while the latter refers to liquid being the non-

wetting phase. The characteristic length of the unit cell

H is defined according to the thickness of the strata ‘‘, ‘g
and ‘s by H ¼ ‘‘ þ ‘g þ ‘s. The volume fractions of the

three phases are given by ‘‘ ¼ e‘H , ‘g ¼ egH and

‘s ¼ esH .

In this paper, we focus on the s–g–‘ configuration,

corresponding results for the other configuration can be

obtained easily with subscript permutation. The flow

is assumed to be laminar and it corresponds to a co-

current liquid–vapor flow along the x-axis. The velocity

profiles corresponding to the s–g–‘ configuration can be

expressed as

ug ¼
hugig

egð3e‘ þ 2egÞ
3ðeg
�

þ e‘Þ2 � 12
y
H

� �2�
ðC:1Þ
Fig. 10. Stratified unit cell––s–g–‘ configuration.
u‘ ¼
3hu‘i‘

2e2‘ þ 3egg‘gðeg þ 2e‘Þ
e2‘

�
þ egg‘gð2e‘ þ egÞ � 4

y
H

� �2�
ðC:2Þ

where g‘g ¼ g‘=gg denotes the viscosity ratio. These ve-

locity profiles are plotted in Fig. 11 for g‘g > 1. Solu-

tions of the closure problems IV, V, VI for the mapping

vectors leads to the following dimensionless form of the

non-traditional convective coefficients

Hðd‘‘iÞx
kg

¼ � 2

5

e2‘k‘
ð2e2‘ þ 3egg‘gð2e‘ þ egÞÞkg

e‘Pe‘ ðC:3Þ

HðdggiÞx
kg

¼ 1

10

2esjgsð7eg þ 15e‘Þ � 3e2g
ð2eg þ 3e‘Þð3eg þ 4esjgsÞ

egPeg ðC:4Þ

HðdgsiÞx
kg

¼ 1

10

3egð5e‘ þ 3egÞ
ð2eg þ 3e‘Þð3eg þ 4esjgsÞ

egPeg ðC:5Þ

and for this particular geometry we found analytically

that

ðu‘‘Þx ¼ ðd‘‘iÞx; ðuggÞx ¼ ðdggiÞx; ðusgÞx ¼ ðdgsiÞx ðC:6Þ

The transport coefficients which are not listed are equal

to zero. In these equations, jgs represents the conduc-

tivity ratio kg=ks and the cell P�eeclet number Peb is defined
as

Peb ¼ ðqCpÞb
hubibH

kb
; b ¼ g; ‘ ðC:7Þ

We recall that Stokes equations have been used in the

calculation of the velocity fields, thus the P�eeclet number

is the only relevant dimensionless parameter rather than

independent Reynolds and Prandtl numbers as was

outlined in [57]. One can also determine the dominant
Fig. 11. Velocity profiles for the s–g–‘ configuration.
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thermal dispersion tensor from Eq. (B.1) and the cou-

pling thermal dispersion tensors from Eqs. (B.2) and

(B.3), the results are given below

ðKggÞxx
kg

¼ eg 1

 
þ 3

2800

egð9e2g þ 35e‘ð1� esÞÞ
ð2eg þ 3e‘Þ2ð3eg þ 4esjgsÞ

e2gPe
2
g

þ 1

2800

esjgsð99e2g þ e‘ð350eg þ 315e‘ÞÞ
ð2eg þ 3e‘Þ2ð3eg þ 4esjgsÞ

e2gPe
2
g

!
ðC:8Þ

ðKggÞyy
kg

¼
e2g

eg þ esjgs

ðC:9Þ

ðK‘‘Þxx
kg

¼ e‘k‘
kg

1

 
þ 1

175

e4‘
ð2e2‘ þ 3egg‘gð2e‘ þ egÞÞ2

e2‘Pe
2
‘

!
ðC:10Þ

ðK‘‘Þyy
kg

¼ e‘k‘
kg

ðC:11Þ

ðKgsÞyy
kg

¼
ðKsgÞyy
kg

¼ eges
eg þ esjgs

ðC:12Þ

ðKssÞxx
kg

¼ es
jgs

ðC:13Þ

ðKssÞyy
kg

¼ e2s
eg þ esjgs

ðC:14Þ

Finally, we give below the dimensionless form of the

heat exchange coefficients that appears in the macro-

scopic equations (54)–(56)

H 2h‘g‘i
kg

¼ 12k‘
e‘kg

ðC:15Þ

H 2hg‘gi
kg

¼ 24ð3eg þ 2esjgsÞ
egð3eg þ 4esjgsÞ

ðC:16Þ

H 2hgsgi
kg

¼ 72

3eg þ 4esjgs

ðC:17Þ

H 2hgssi
kg

¼ �48

3eg þ 4esjgs

ðC:18Þ

H 2hg‘si
kg

¼ �24

3eg þ 4esjgs

ðC:19Þ

Here again the transport coefficients which are not

listed are equal to zero.
C.2. Chang’s unit cell

Analytical results have also been obtained for the

three-phase version of the Chang’s unit cell [19] shown

in Fig. 12. The radii r1 and r2 corresponding to the s–g–‘
configuration are defined by r1 ¼ R
ffiffiffiffi
es

p
and r2 ¼

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
es þ eg

p
, where R is the characteristic length of the unit

cell. Details concerning the methodology of resolution

of the closure problems can be found in Quintard and

Whitaker [58]. Here, we give only the results concerning

the dimensionless form of the heat transfer coefficients

corresponding to the s–g–‘ configuration:

h‘g‘i R
2

kg
¼ �8e2‘k‘

kgðe‘ðe‘ þ 2Þ þ 4 ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e‘

p
Þ

ðC:20Þ

hg‘giR
2

kg
¼ 8egðegðjgs � 2Þþ 4ð1� e‘ÞnÞ
egððeg� 2esÞjgs � 4egÞþ 4ðe2s ðjgs � 1Þþ ð1� e‘Þ2Þn

ðC:21Þ

hgsgiR
2

kg
¼ 16egðeg � 2esnÞ
egððeg� 2esÞjgs � 4egÞþ 4ðe2s ðjgs � 1Þþ ð1� e‘Þ2Þn

ðC:22Þ

hgssi R
2

kg
¼ �8egðeg� 2esÞ� 32e2sn

egððeg� 2esÞjgs � 4egÞþ 4ðe2s ðjgs � 1Þþ ð1� e‘Þ2Þn
ðC:23Þ

hg‘si R
2

kg
¼ �8egðeg þ 2esÞþ 32esð1� e‘Þn
egððeg� 2esÞjgs � 4egÞþ 4ðe2s ðjgs � 1Þþ ð1� e‘Þ2Þn

ðC:24Þ

Here the parameter n is defined as

n ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1� e‘
es

s

Despite the simplicity of the Chang’s unit cell, the

expressions for the heat exchange coefficients are more

complicated than those corresponding to the stratified

medium and they correspond to a more relevant physi-

cal description. Indeed, when evaporation or conden-

sation occurs, the liquid volume fraction changes and

the Chang’s unit cell takes into account the change in the
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liquid–vapor exchange area per unit volume while the

stratified unit cell considers constant exchange area per

unit volume for all the values of the liquid volume

fraction.
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